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Linear birefringence measurements of dilute and semi-dilute polyisobutylene solutions 
following flow through a disordered fixed fibre bed of 2.47 % solids volume fraction 
provide both transient and steady measurements of chain deformation. Our results 
indicate that the flexible polyisobutylene polymers undergo a large conformation 
change, stretching in the direction of the average flow. This occurs even though the 
average flow in the bed is a plug flow which would not cause any polymer stretch by 
itself. The polymer stretch or conformation change increases with the number of chain 
interactions with bed fibres and ultimately reaches a steady-state value that can be 
correlated with the pore-size Deborah number (i.e. a characteristic polymer relaxation 
time divided by a characteristic flow time in the bed pore). Large changes in the 
polymer conformation are noted for values of the Deborah number, De > 5 .  In 
addition, the time to steady state scales with the characteristic flow time within a pore 
over a large range of Deborah numbers. The pressure drop across the fibre bed was also 
measured simultaneously with the birefringence measurement and was found to be 
directly proportional to the birefringence throughout the range of De investigated. 
Thus, we show empirically, for the first time, that chain elongation, which produces 
normal stress anisotropy within the fluid, is directly responsible for the increased flow 
resistance. These findings are then analysed in the light of recent theories for the 
response of polymer molecules in fixed bed flow fields (Shaqfeh & Koch 1992). It is 
shown that our results are consistent with the interpretation that these flows are 
stochastic strong flows, which create an apparent ‘coil-stretch’ transition. After 
extending the theory of Shaqfeh & Koch to account for the specifics in the experiments, 
including the bed geometry and statistics as well as the polydispersity of the polymer 
solutions, it is shown that the theory can predict most of the experimental results both 
qualitatively and quantitatively. 

1. Introduction 
The behaviour of polymer molecules in porous media flows has been extensively 

examined during the last three decades (Marshall & Metzner 1967; James & McLaren 
1975; Durst, Haas & Kaczmar 1981). Early studies reported that dilute polymer 
solutions subjected to flow through fixed porous media exhibited apparent strain- 
thickening rheological behaviour. Specifically, the pressure drop necessary to pump the 
fluid at a constant flow rate increased dramatically with the presence of polymeric 
material even though the concentration of the high molecular weight species was as low 
as 6 p.p.m. Early among these studies was the work of James & McLaren (1975), who 
reported not only the increase in flow resistance present in the polymeric flow through 
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fixed beds of glass spheres, but also evidence of polymer degradation in the flow. This 
work and the supplementary studies of Durst et al. (1981) led to the supposition that 
flow resistance was increasing because the polymers were undergoing a type of ‘coil- 
stretch ’ conformation change similar to that experienced by flexible polymer chains in 
a rheological strong flow (Olbricht, Rallison & Leal 1982; Tanner 1985). Note that this 
apparent transition occurred even though the average flow in a porous bed is a plug 
flow, and thus there are no average velocity gradients within the bed to alter polymer 
conformation. 

These early studies are characterized by several key features. First, the porous beds 
consisted almost exclusively of packed geometries in which the solids volume fraction 
was large and the bed geometries could at best only be inferred from likely packing 
geometries. Thus, the solids volume fraction was the main feature characterizing the 
bed. Secondly, the primary observable was a measurement of the pressure drop across 
the bed. Thus, conclusions about the average polymer conformation could only be 
inferred from these pressure measurements and remained qualitative. 

The purpose of the present communication is two-fold. First, we wish to present a 
complete set of experimental measurements directly probing polymer conformation 
change in flow through porous media. The second goal is to analyse the results in the 
light of existing theories of stochastic flows, thus comparing predicted conformation 
change to the measured values. 

The experimental work we present differs in two ways from previous experiments. 
First, in 92 we describe the unique porous bed considered. It is a dilute (2.47 YO) fibre 
bed that is statistically well-characterized but disordered. Since the bed is dilute, there 
exist no geometric or steric effects which align and stretch the polymers. In addition, 
the probability of a polymer passing to within a fibre radius from a given fibre is small, 
since the Darcy pore size in the dilute media is much larger than the characteristic scale 
(i.e. the fibre radius) of the constituent bed particles. Therefore, the leading effect for 
small bed volume fraction is expected to be due to the far-field hydrodynamic 
interactions (those that scale on the pore size) between the bed particles and the 
polymers. 

Secondly, rather than relying entirely on pressure drop measurements to infer 
polymer conformation, in addition we measure the flow birefringence, a method which 
directly measures polymer conformation change (Frattini & Fuller, 1984; Galante 
199 1). Birefringence measurements on flexible chain polymer systems have been used 
as a means of experimentally investigating flow-induced microstructure deformation 
for many years (Kuhn & Grun 1942; Coleman, Dill & Toupin 1970; Peterlin 1976; 
Wales 1976; Janeschitz-Kreigl 1983; DuPuis, Layec & Wolff, 1986; Larson, Kahn & 
Raju 1988; McHugh, Mackay & Khomami 1988; Pearson et al. 1989; Geffroy & Leal 
1990; Fuller 1990; Galante & Frattini 1993; Kishbaugh & McHugh 1993). We have 
used a similar technique - conservative linear dichroism - in our previous study of 
rigid particle orientation in flow through the same fixed bed (Frattini et al. 1991). 

In 92 we describe the polarization modulation technique utilized to measure the 
birefringence of the polymer solution exiting the fibre bed. This method offers a direct 
non-invasive probe of polymer conformation, and thus is a substantial improvement 
over previous experiments. Furthermore, the measurement of birefringence at the bed 
exit facilitates analysis of polymer conformation averaged over the cross-sectional area 
of the laser beam as opposed to an average over the larger length typical in pressure 
drop measurements. 

The polymer solutions, including practical aspects of their preparation, are also 
discussed in 92. The polymer solutions analysed were similar in composition to the 
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three-component Boger fluid, M1 (Sridhar 1990; Nguyen & Sridhar 1990). The 
polymer of interest was a high-molecular-weight polyisobutylene (PIB) in solution with 
a low-molecular-weight polybutene (PB), the latter serving as a viscosifier to increase 
the characteristic relaxation time of the solvated polymer. In addition, we used a 
volatile solvent, trichloroethylene, to initially solvate the PIB. Like M 1, this solution 
exhibited a constant shear viscosity over a large range of shear rates (0.1 s-l-50 s-') 
and the PIB was relatively polydisperse. However, unlike M1 the concentration of the 
PIB in solution was restricted to the dilute and near dilute regime (50, 100, 333 and 
1000 p.p.m.). 

In $ 3  both transient and steady-state results are presented. We show, via 
measurements of the solution birefringence, that flow through a dilute fibre bed 
produces a high degree of polymer stretch in the direction of the mean velocity. The 
pressure drop across the bed was found to track the birefringence, indicating that 
the apparent hydrodynamic resistance of the bed increases as chains deform. The 
polymers, on average, become increasingly stretched from the coiled equilibrium state 
as they flow through the fixed fibre bed, and the degree of this average stretch can be 
correlated with the distance traversed through the bed by a polymer. The magnitude 
of stretch eventually attains a steady-state value which increases monotonically with 
the pore-size Deborah number (De = U h / ~ l / ' ,  where U is the mean flow velocity, h is 
the characteristic relaxation time of the polymer, and K'/' is the pore size of the bed). 
It is shown that the degree of stretch at steady state increases significantly above a 
certain value of the pore-size Deborah number (De - 5 )  while relatively little stretch 
is noted at pore-size Deborah numbers lower than this value. 

We note that the ability of the pore-size Deborah number to determine the onset of 
significant polymer stretch suggests that this stretch is due to the interactions of the 
polymers with the far-field velocity gradient fluctuations (which scale on the pore size) 
rather than 'close' hydrodynamic interactions which are determined by the geometry 
of individual bed fibres (such as stretch due to the rear end stagnation point (Harlen, 
Hinch & Rallison 1992)). 

The degree of stretch at steady state is shown to be large through evidence of 
permanent polymer degradation, measurements of a large pressure drop across the 
bed, and comparison of our results with birefringence data obtained in the extensional 
flow of a two-roll mill (a known strong flow) for a similar polymer system (Geffroy & 
Leal 1990). We show that the magnitude of the steady-state values for both systems are 
of the same order of magnitude. Unlike Geffroy & Leal (1990) who see chain scission, 
other authors have subjected flexible systems to extensional flows in opposing jet-type 
geometries and have concluded that one explanation of their light scattering data might 
be that intrachain segments orient but the chain itself is not fully elongated (Cathey & 
Fuller 1990; Menasveta & Hoagland 1991). However, the large pressure drops seen in 
our dilute fibre bed in conjunction with our observation that there exists a direct 
proportionality between the pressure drop and the birefringence demonstrates that the 
increased bed resistance is indeed due to the elastic stresses which develop as the chain 
is fully elongated, and that the scission we also observe is occurring in highly elongated 
chains. 

Finally, our experimental results show a dilute concentration regime, where 
polymer-polymer interactions are negligible. This is determined through examination 
of the flows of fluids at four polymer concentrations (50, 100, 333: 1000 p.p.m.). The 
50 and 100p.p.m. solutions behave as dilute solutions for all Deborah numbers 
examined. However, the transition concentration from dilute to semi-dilute is found to 
be conformation dependent. 
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The results in $3 are then analysed in the light of the existing theory for the flow of 
polymer solutions through dilute fibre beds, but modified to include the specific 
characteristics of our experimental system. In short, previous theoretical studies have 
involved as examination of the behaviour of model polymer molecules (usually 
dumbbell models) in their flow through simple deterministic geometries designed, in 
principle, to capture the salient characteristics of porous media or fixed bed flows. The 
most oft-used model is the wavy-walled tube (Deiber & Schowalter 1979; Zick & 
Homsy 1984; Pilitsis & Beris 1989). These studies range from the use of analytical 
techniques (e.g. perturbation theory) to large computational studies which include full 
numerical solutions of the flow of model elastic fluids (i.e. Oldroyd-B fluids) in wavy- 
walled tubes. All of these studies failed to show the large degree of ‘global’ polymer 
stretch suggested by previous experimental work. 

In more recent work, numerical solutions of the flow of model elastic solutions past 
single cylinders or periodic arrays of cylinders have been presented by Townsend 
(1989); Chilcott & Rallison (1988); Chmielewski, Petty & Jayaraman (1990); Skartsis, 
Khomami & Kardos (1992); and McKinley, Armstrong & Brown (1993). Chilcott & 
Rallison (1988), looking at flow past a single cylinder, showed that the rear stagnation 
point in the flow past fixed cylinders does produce a region of highly stretched 
polymers. Chmielewski e f  al. (1990), who studied arrays of cylinders for a number of 
geometries, determined that polymer stretch not only occurred near the rear stagnation 
point but could also occur in the gaps between the cylinders owing to the interparticle 
interactions. Although these studies show large polymer stretch locally, they fail to 
produce the large polymer stretch considered necessary to obtain large flow resistance 
when averaged over the entire polymer population. In other words, while some 
polymers become highly stretched in regions where close interactions are an important 
mechanism for stretch, the majority of polymers will not enter these extensional areas. 
Thus, on average, the polymers will not be in a highly stretched state. Skartsis et al. 
(1992) used an ‘improved capillary’ model to describe the flow past cylindrical arrays 
which, although yielding improved predictions when compared to idealized porous 
arrays, was unable to predict the high pressure drops encountered in disordered beds. 

In a different approach, Shaqfeh & Koch (1992) argued that the disorder in fixed 
beds was a crucial element lacking in all of the previous theoretical models. They used 
the method of averaged equations (Hinch 1977) to develop an ensemble-averaged 
description of the dynamics of Hookean and FENE dumbbells (Bird et al. 1978) 
flowing through disordered dilute fixed beds of spheres or fibres. Their kinetic theory 
showed that, for dilute fixed media, the largest contribution to the evolution of the 
configuration of flowing dumbbells came from long-range interactions, i.e. hydro- 
dynamic interactions on the scale of the pore size in the media. The pore sizes in these 
dilute media are much larger than the characteristic scale of the constituent particles 
in the media, hence the name ‘long-range’ interactions. The solution of the evolution 
equation which included these long-range interactions showed a dramatic increase in 
the radius of gyration at a specific critical flow rate which was very similar to the ‘coil- 
stretch’ transition that is predicted in classical strong flows. However, unlike 
traditional ‘coil-stretch’ flows, the transition of the polymers to a highly stretched 
conformation comes about by multiple diffusive hydrodynamic interactions with the 
bed particles. In addition, the critical flow rate or, in dimensionless terms, the critical 
pore-size Deborah number was determined explicitly for a number of fixed bed 
geometries and, in particular, the specific statistical description of the media necessary 
to determine these critical conditions was uncovered. 

In 94, we modify the theory of Shaqfeh & Koch (1992) to account for the 
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polydispersity of our dilute polymer sample. We note that the model includes 
interactions between single polymer chains and single bed particles (with the latter 
interaction including the mean field screening of the surrounding fixed bed particles). 
Thus, for a polydisperse polymer sample we simply integrate the previous results over 
a distribution of molecular weights. In this context, we remain within the dumbbell 
model for the individual chains and thus the spectrum of molecular weights corresponds 
to a spectrum of equilibrium lengths and relaxation times. The integration includes 
quadrature over these spectra. The result of this modification for a log-normal 
distribution of polymer molecular weight is a broadening in the pore shear rate of the 
transition originally predicted for a single monodisperse solution of dumbbells. As is 
expected, this broadening depends on the standard deviation of the molecular weight 
distribution. 

In $4 we also rework the previous theory for the particular bed configuration used 
in our experiments presented in $3. This particular bed, as described elsewhere (Frattini 
et al. 1991), is disordered but is square symmetric in the plane perpendicular to the 
mean flow. Such bed structures were not considered in the previous theoretical work 
(Shaqfeh & Koch 1992) although the physical principles contained in the previous 
analysis are certainly applicable. Thus, specific calculations for the known bed statistics 
of our experimental bed are developed and the critical conditions are predicted from 
first principle calculations. 

Finally, in $5 we compare the modified theory with the experimental results. First, 
we fit an experimentally measured molecular weight distribution with the log-normal 
distribution to determine the mean and variance of the molecular weight distribution 
of our sample. We then, using accepted methods to relate the molecular weight 
distribution to the polymer relaxation time distribution, fit the normalized decay of the 
birefringence after cessation of flow with the predictions of our modified theory in a 
good solvent. 

Thereafter, a comparison of the steady-state predictions of the polymer stretch and 
the experimental steady-state birefringence measurements versus the characteristic 
pore shear rate ( U / K ' / ~ )  is made. Strong qualitative and quantitative agreement is 
found. Lastly, the transient birefringence measurements (from the initial coiled 
conformation to the eventual steady-state stretched conformation) are compared, with 
no adjustable parameters, to the predictions of the time-dependent second moments at 
various values of the characteristic pore shear rate. While qualitatively the comparison 
of theory and experiment show agreement, there exist quantitative differences. 

2. Experimental 
We examine the degree of polymer stretch induced by flow through a dilute fixed bed 

of randomly positioned fibres using the polarization-modulated flow birefringence 
method (Frattini & Fuller 1984; Galante 1991 ; Galante & Frattini 1993). In addition 
we also simultaneously measure the pressure drop across the bed. The fibre bed 
construction and its experimental characterization have been described in Frattini et al. 
(1991). In the present work we obtain the exit birefringence of flexible poly(isobuty1ene) 
solutions of dilute and semi-dilute concentrations over a range of flow rates 
corresponding to pore-size Deborah numbers, U A / K ~ / ~ ,  ranging from 3 to 25. The 
following subsection summarizes the essential features of the fibre bed flow cell and the 
pressure sensing and rheo-optical instrumentation, and describes the preparation and 
characterization of the test solutions. 
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FIGURE 1. The geometry of our fibre bed with the coordinate system used in our analysis. For a 
photograph of the fibrous bed see Frattini et al. (1991). 

2.1. Fibrous bed andJlow cell 
The dilute fixed fibre bed used for all experiments is identical to the bed used in Frattini 
et al. (1991), and their work should be consulted for a more detailed description and 
physical characterization of the bed. The cylindrical housing for the fibre bed, with 
inner diameter 3.59 cm, mounts an approximately 2.54 cm square block of crossed 
fibres along its axis. The bed was produced by inserting 492 pieces of hypodermic 
tubing with outer diameter 0.0203 cm (0.008 in.) through the housing which was later 
sealed with epoxy. While the fibre positions were random, the orientations were 
confined to two orthogonal directions in the plane perpendicular to the cylinder axis. 
This geometry produced two different bed regions (figure 1): the central square porous 
bed and a second, but different, porous region surrounding this. The resulting central 
square bed has a volume fraction, &, of 0.0247 and a Darcy pore size, K ’ ’ ~ ,  of 
0.0486 cm. The bed length, Lbed, is 2.54 cm (1.0 in.) or approximately 50 pore lengths. 
The laser beam was positioned along the diagonal of the central block maximizing 
exposure of the sampled polymer particles to the crossed fibre media. The insertion of 
pressure taps at both ends of the bed (the position was 0.2 cm from last fibre) allowed 
pressure drop measurements to be made concurrently with optical measurements. The 
pressure taps were connected to a Validyne DP15-TL differential pressure transducer 
( f 5 p.s.i. and f 20 p.s.i. membranes, accuracy - & 0.5 % FS) and a CD15 sine wave 
demodulator with high-pressure tubing to determine the pressure difference between 
these two points during flow. 

A dual-reservoir piston drive mechanism is employed to impose steady flow through 
the bed in the direction of the cylinder axis, as described previously (Frattini et al. 
1991). In the present work, piston movement was accomplished by a screw assembly 
(1 3 rev/in.) driven by a computer-controlled Compumotor CPLX83-150 stepper 
motor. The motor has a resolution of 5000 steps rev-’ and an accuracy of f 6 arc s-l. 
The motor could attain a ‘step’ in velocity within 1/2500 of a revolution. The 2.82 N m 
of available torque easily handled any loads that we encountered. The flow rate 
through the bed was calculated from the velocity of the piston, Upiston, corrected for 
the differences in flow resistance within the square bed structure and the surrounding, 
lower resistance, bed sectors. The bulk flow velocity, U, through this central square bed 
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was a factor 0.668 less than Upiston. Flow velocities of 0.01 to 3.0 cm s-' were easily 
attainable. The flow cell is mounted horizontally directly onto the optical rail described 
in 52.2. The observation point at the fibre bed exit was positioned within, at most, two 
screening lengths of the last fibre in the bed. The active optical path along the diagonal 
of the central block was 3.12 cm (Frattini et al. 1991). 

Initiation of an experimental run involved the 'step' of the motor to the desired 
velocity, producing a bulk plug flow in the crossed fibre bed. Polymers traverse the 
porous cell, sample the velocity gradient fluctuations within the bed and eventually exit 
the bed. Optical sampling was obtained at the end of the bed and, since the bed was 
initially full, this is equivalent to sampling the polymers in a reference frame moving 
with the bulk velocity, U. In other words, the polymers emerging from the bed at time 
t have sampled the bed for a length of time t. 

2.2. Optical theory and instrumentation 
A measure of the conformation of a collection of polymers can be described by two 
averaged quantities : the average amount of stretch, measured by the second moment 
of the polymer end-to-end vector, and the orientation of that stretch. These two 
quantities can be directly related to two measurable optical quantities, the birefringence 
and the extinction angle, respectively, which can simultaneously and independently be 
obtained using polarization-modulated polarimetry. 

The magnitude of the birefringence of a medium is defined as the difference of the 
principal eigenvalues of the real part of the effective refractive index tensor of the 
continuum sample. Physically it manifests itself in materials that unequally retard light 
waves which are linearly polarized in different directions. Microscopically, net 
polarizability must be produced by some dielectric anisotropy in the material structure. 
One can imagine a solution consisting of polymers stretched and aligned producing 
such an anisotropy. Structurally, a linearly polarized light wave will, in general, retard 
differently when polarized along the length of the polymer chain backbone as opposed 
to when it is polarized perpendicular to that chain. Thus, the birefringence is related 
to some measure of the average conformation of the polymers, specifically, the second 
moment of the distribution of the end-to-end distance vector. The derivation relating 
the second moments of the polymer end-to-end vector to the index of refraction tensor 
is well known (Kuhn & Grun 1942; Peterlin 1961) and consists of treating the polymer 
as a set of connected retarding elements. 

The second moment of the end-to-end distance vector, R ,  in a Cartesian system can 
be related to the index of refraction tensor as follows: 

dev (nij) = A dev ( Ri Rj), (1) 

] 2vp2, [ 45 n 
271 (n2 + 2)* 

A = (@,-a2)-- 

'2 

where dev denotes the deviatoric part of the tensor, (a, - a,) is the difference of the 
eigenvalues of the polarizability tensor of each retarding element, n is the isotropic part 
of the index of refraction tensor, v is the number of chains per unit volume, N is the 
number of idealized segments per chain, and b is the length of each segment. The 
bracketed term in (2) is the traditional stress-optical coefficient multiplied by the 
Boltzmann energy, kT. Thus, the refractive index tensor is proportional to the second- 
moments tensor. 
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Defining the birefringence, An', as the difference in the principal eigenvalues of the 
index of refraction tensor we have 

An'sin (231) = 2A( R ,  R, ) ,  

An'cos (2x1 = 4 ( R 3  R3) - ( R ,  4 ) 1 ,  

(4) 

( 5 )  

where x is the extinction angle and represents the angular difference between the optical 
and experimental reference frame, and 1 and 3 represent the two principal axes 
perpendicular to the laser beam defined specifically by the experimental setup (see 
figure 1). Note that because of the symmetry of our flow cell, the probability density 
of polymer conformation will always be square symmetric about the mean flow 
direction for all time. Thus, we configured our optical setup such that the experimental 
and optical reference frames were collinear as described below. It follows that, for all 
our experiments, x was zero and (4) and ( 5 )  reduce to 

An' = A [ ( R 3 R 3 ) - ( R , R , ) ] .  (6)  

Therefore, the measurement of the birefringence is a direct probe of the difference of 
the second moments, ( R ,  R , )  - ( R ,  R , ) .  

A polarization-modulated polarimeter (Galante 199 1) was used to measure the 
linear birefringence of the polymer flows. The polarimeter consisted of an Eifle Inc. 
mounting system and photodiode detector, a Uniphase Helium-Neon laser (632.8 nm), 
Karl Lambrecht polarizing optics and lenses, and a Hinds International photo-elastic 
modulator. The laser beam was initially focused with a 500 mm lens placed ahead of 
the first polarizer. The beam then passed through a polarizer oriented azimuthally at 
90" to an arbitrary laboratory axis, a photoelastic modulator at 45", the flow cell, and 
finally a second polarizer at -45". The alignment procedure is found in Galante 
(1991). The intensity of the emerging laser beam was measured and processed by two 
EG&G PARC 5208 heterodyning lock-in amplifiers. These amplifiers decomposed the 
signal into its first and second harmonics with respect to the frequency of the 
photoelastic modulator, I, and IZw. These two signals along with the zero-frequency 
reference, Id,, were sent to a Nicolet digital oscilloscope for storage and final transfer 
to a computer for data analysis. These three observables are related to the birefringence, 
An', and extinction angle, x, as follows: 

Iw/Idc = 24(A, )  sin (8) cos ( 2 ~ ) ,  (7) 

I,,/I,, = 2J,(A,) [ 1 - cos (S)] sin (22) cos (2x), (8) 

where J, is the nth Bessel function of the first kind, A ,  is the value of the amplitude of 
the photoelastic modulator at which &4,) = 0, and S is the retardance of the sample. 
Values of the Bessel function were found experimentally and varied slightly from 
theoretical values (maximum deviation 3 YO) owing to phase lags, small non-idealities 
in the photoelastic modulator amplitude setting, and small unavoidable deviations 
from theoretical alignment in the laboratory. The retardance, 6, is related to the 
birefringence as follows : 

(9) 

where A, is the wavelength of the laser and L is the active optical pathlength. As stated 
before, the azimuthal optical axis was aligned such that it was collinear with the 
experimental flow axis. This was accomplished through a simple rotation of the 
elements of the optical train in unison until the I,, observable did not deviate from its 
baseline value during flow, thus complying with the assumption x = 0. In all 

S = - 2n: An'Llh,, 
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experiments the two ratios, given in (7) and (8), were measured and the resulting 
extinction angle and birefringence were calculated. 

2.3. Polymer solutions 
The polymer solutions investigated in this paper are a combination of high-molecular- 
weight polyisobutylene (PIB), low-molecular-weight polybutene (PB), and trichloro- 
ethylene. This fluid is very similar to the M1 fluid, a Boger fluid, examined in 
Sridhar (1990). However, unlike M1, a range of solution concentrations in the dilute 
and semi-dilute regime were examined. 

The solid high-molecular-weight PIB (4-6 x lo6 g mol-l, Aldrich no. 18,149-8) was 
solvated in the trichloroethylene in a ratio of approximately 1 : 100 for about one week. 
This produced a working concentrate from which more dilute solutions could be made. 
This concentrate was prepared such that the smallest amount of solvent was present to 
fully solvate the PIB. The low-molecular-weight PB (MW 950, Parapol, Exxon no. 
81330) was then added to this concentrate as a bulk viscosifier. Polybutene 
( p  = 355P @ 18.9 "C; p = 0.85 g crnp3), is known to behave as a Newtonian liquid at 
all but extreme deformation rates (in shear) because of its low molecular weight. We 
shall investigate the elasticity of the polybutene in the flow history of the stochastic 
fibre bed via birefringence measurements discussed in $ 3. 

This three-component solution was then placed in a vacuum chamber to evaporate 
a large percentage of the trichloroethylene, which in turn increased the characteristic 
relaxation time of the polymers in solution. This increased relaxation time allowed flow 
velocities to be relatively low while maintaining a large Deborah number. In addition, 
a longer relaxation time meant greater resolution in all the experimental measurements. 
The solution was mixed daily and kept under vacuum for approximately one month 
followed by ambient mixing for one week to remove any concentration gradients 
produced by the evaporation. 

While the polydispersity of the PIB was reported to be 4-6 x los g mol-' by the 
manufacturers, our own gel permeation chromatography experiments suggest a 
broader distribution of molecular weights. Using a Waters chromatograph, consisting 
of a Waters 510 pump, U6K injector, 3 Shodex columns and a Waters 410 differential 
refractometer, we found a large percentage of the polymers lie in the 2-20 x lo6 g mol-l 
range. We shall use the molecular weight distribution found in these experiments in our 
analysis in $5 .  

Solutions at PIB concentrations (by weight) of 50, 100, 333 and 1000 p.p.m. were 
produced. The critical concentration at which the domains of the coiled polymers at 
equilibrium overlap, C*, can be calculated to be around 1000 p.p.m. (Quinzani et al. 
1990). It is expected that the dilute regime will lie at or below this concentration. The 
shear viscosity, 7, for the 333 p.p.m. solution was measured at 294 K and was found 
to have a constant value of 225 P over a range of shear rates from 0.1 to 50 s-'. All 
viscosity measurements of the PIB Boger fluids were performed on a Rheometrics 
Dynamic Analyzer RDA 11. A cone-and-plate geometry was used with a gap of 25 pm 
and an angle of 0.02 rad. 

3. Results 
Polyisobutylene solutions of different PIB concentration (50, 100, 333 and 

1000 p.p.m.) were subject to the sudden inception of a constant flow rate through the 
porous fibre bed. Measurements of the birefringence and the extinction angle were 
taken in order to directly and non-invasively probe the polymer's conformation. In 
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FIGURE 2.  Transient birefringence €or a 333 p.p.m. PIB solution at various values of the pore-size 
Deborah number, shown on the figure together with the respective relaxation times for each flow. 
Each set of data points represents an average over 3 or 4 separate runs. Systematic error is on the 
order of the size of the plot symbols. 

addition, measurements of the pressure drop across the fibre bed were concurrently 
made. Each polymer solution was subjected, by varying the mean flow velocity, to a 
number of flows over a wide range of pore-size Deborah numbers. The pistons 
maintained a constant velocity for approximately 60 pore lengths (recall that the bed 
length is 50 pore lengths), at which time the flow was stopped. The birefringence 
measurement was continued thereafter, until the polymer’s relaxation produced a 
decay of the signal voltage to its equilibrium baseline value. All data were then 
converted into values of the birefringence and the extinction angle, x. We confirmed 
that the latter remained zero throughout the experiment. The decay of the birefringence 
signal, due to the polymers’ relaxation from their bed-induced stretched conformation, 
provided a measure of the characteristic relaxation time for the polymer. As a measure 
of this relaxation time, we fit the decaying signal with an exponential, thus inferring a 
time constant for the decay. A discussion and fit to a spectrum of relaxation times is 
given in $5 .  Because of the possibility of polymer degradation, a ‘leap-frog’ run 
sequence was employed; namely, after every increase in the velocity a previous or 
reference velocity was rerun to document any permanent decrease in the birefringence 
signal at a given pore-size Deborah number. For the discussion in this section, the 
relaxation time used in determining the pore-size Deborah number will be based on the 
timescale obtained through the exponential f i t  of the experimental relaxation data for 
eachflow, A. 

3.1. Birefringence data 
Figure 2 shows a typical example of transient birefringence data for the polyisobutylene 
solutions during flow. The birefringence for a 333 p.p.m. solution is plotted against a 
laboratory time which has been made dimensionless. Physically the dimensionless time 
represents the number of pore lengths an average polymer emerging from the bed has 
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FIGURE 3. Relaxation of the birefringence for a 333 p.p.m. PIB solution after being subjected to flow 
through a fibre bed at U / K ~ / ~  = 4.05, corresponding to a pore-size Deborah number of 14.01 
(symbols). The heavy line is an exponential fit of the form An’ = A + Be-c’A where the empirical value 
of h was 3.46 s. 

traversed. The data are shown for a number of different flow velocities and their 
corresponding pore-size Deborah numbers are also presented. Each data set is an 
average of 3 or 4 separate runs. 

At t = 0 a step change to the desired flow velocity was created. The polymers 
traverse the bed and hydrodynamically interact with the fixed bed particles, causing 
them to stretch in the direction of flow on average. The graph shows a monotonic 
increase in the amount of birefringence, corresponding to increased stretch, as a 
function of the pore lengths traversed and reaches a steady state value which increases 
with Deborah number. In $3.2 concurrent measurements of the pressure drop across 
the bed are shown which further confirm that the polymers are being stretched as 
opposed to simply becoming aligned segmentally. This increase in the birefringence 
along with measurements of the extinction angle indicate the polymers are, on average, 
being stretched and this stretch is in the direction of the bulk flow. Thus, we see a direct 
confirmation that the polymers are stretched in a dilute fixed bed. 

The number of pore lengths required to reach a steady state is approximately the 
same for intermediate values of the Deborah number (De d 9): approximately 30. In 
other words, it is the number of polymer interactions with fibre bed particles which 
determines the time necessary to produce a steady-state conformation distribution. As 
the Deborah number is increased, however, the number of pore lengths required to 
reach steady state also increases. 

As mentioned previously, at the end of each transient run the flow was stopped and 
the birefringence signal decayed to its baseline value as the polymers entropically 
recoiled. Figure 3 shows the relaxation data for the same 333 p.p.m. solution of PIB 
(once again the average of 3 runs) after cessation of flow (De = 14.01), along with a 
floating baseline-exponential fit as a function of laboratory time. This plot is 
representative of the relaxation data for all other solutions and Deborah numbers. The 
data sequence begins with the first data point collected after the flow ceases. The 
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FIGURE 4. Transient birefringence data for the flow of the pure polybutene solvent through the fibre 
bed at a characteristic pore shear rate, U/K1I2. Flow initiation is at 0.5 s and flow cessation is at 2.9 s. 
The inset shows an expanded view of the decay of the birefringence due to entropic recoil. 

maximum value of birefringence (An' = 1.02 x has been normalized so that its 
value is unity. The exponential fit accompanying the plot is of the form 

(10) 
where A and B are simply fitting parameters while h is some average characteristic 
relaxation time of the polymer. All relaxation times were found in this way and then 
used to calculate the experimental Deborah number reported for each run. The 
relaxation times obtained using this method closely matched those obtained through 
an exponential fit of the decay of the first normal stress difference after cessation of 
shear as measured by a Rheometrics RDA-I1 rheometer using a cone-and-plate 
geometry. Both techniques produced relaxation times for the 333 p.p.m. solution at 
21 "C of approximately 3 s. As expected, the extinction angle measured during this 
entropic recoiling remained at zero. 

Since the bulk viscosifier, polybutene, is also a polymer, it can, in principle, also 
produce a birefringence signal. Even though the polymer has a low molecular weight 
and will undergo much less deformation relative to the high molecular weight PIB, it 
does comprise the bulk of the fluid. Figure 4 shows a transient run of a solution 
comprising only the bulk viscosifier, polybutene. The birefringence is plotted against 
laboratory time. The graph shows inception of flow at t = 0.5 s and cessation of flow 
(expanded in the figure inset) at t = 2.9 s. While the increase in birefringence is 
measurable, its magnitude is small (2 YO) when compared with the 1000 p.p.m. solution 
which exhibited birefringence values above 1 x lop6. However, for very dilute PIB 
solutions (i.e. 50 and 100 p.p.m. solutions), this additional signal cannot be neglected. 
A common method of removing this effect is outlined by Phillippoff (1964). This 
method involves vectorially subtracting the effect of the polybutene. In principle, this 
can be accomplished by obtaining a separate transient record of the polybutene's 
birefringence. Fortunately this task was made considerably easier owing to the 
characteristics of the flow cell and polybutene. First, the porous cell produces an 

= A + Bexp (- t / n ) ,  
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FIGURE 5. Transient pressure drop data for the flow of a 1000 p.p.m. PIB solution, above the PB 
solvent baseline, at various values of the pore-size Deborah number. The numbers on the right show 
the value of the steady-state data normalized by the pressure drop of the PB solvent alone. 

average alignment of the stretched polymers in the direction of flow regardless of 
polymer size. Therefore, any vectorial subtraction reduces to scalar subtraction. In 
addition, as figure 4 shows, the relaxation time of the polybutene sample is two orders 
of magnitude smaller than that of the PIB. Because the birefringence of the polybutene 
sample attains a steady-state value and also decays to its baseline value on a timescale 
(0.02 s) which is much smaller than that of the PIB, it is unnecessary to run two 
different polymer solutions. In other words, the PB polymers in solution attain their 
steady-state conformation 'instantaneously ' relative to the time necessary for the PIB 
to attain their steady-state conformation. Therefore, the PB contribution to the 
birefringence signal can be removed by subtracting the baseline birefringence value 
(produced solely by the presence of PB) found immediately after inception of flow. This 
technique is employed in all our experiments and thus all references to the birefringence 
of the P I 3  ssolutions will be to the birefringence produced solely by the PIB in solution. 

3.2. Pressure drop data 
Pressure drop measurements across the bed were made simultaneously with 
measurements of the birefringence. If only segmental alignment of the polymer 
backbone were occurring without any significant polymer stretch, the resistance to flow 
would not increase. Therefore, measurement of the pressure drop across the bed offers 
a check on our interpretation of the birefringence measurements as implying stretch of 
the entire polymer coil. 

In figure 5 we show the transient pressure drop for a number of flow velocities as a 
function of the dimensionless flow time for the 1000 p.p.m. solution. The pressure drop 
shown is the solvent pressure drop subtracted from the total pressure drop. In other 
words the pressure drop plotted represents the additional pressure drop due to the 
presence of the PIB polymer. As with the birefringence, the inception of flow causes an 
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FIGURE 6 .  The steady-state values of the pressure drop across the fibre bed for the pure polybutene 
solvent as a function of the pore shear rate (symbols). The line shows a linear fit to the experimental 
data. 

increase in the pressure drop across the bed. This increase eventually reaches a steady- 
state value which increases with the pore-size Deborah number. To the right of the 
figure is shown the factor by which the pressure drop is greater than the Newtonian 
solvent value. For the higher flow rates the additional 1000 p.p.m. of PIB produced a 
ten-fold increase in the pressure drop over the solvent pressure drop, showing a large 
increase in the flow resistance. This unambiguously demonstrates that large polymer 
stretch and not just segmental polymer alignment occurs in the bed. 

To determine the pressure drop associated with the solvent and also to check the 
linear relationship between the pressure drop and the flow rate for a Newtonian fluid, 
additional runs were taken with polybutene. In figure 6, the steady-state pressure drop 
for just the Newtonian polybutene solvent is shown along with a linear fit. As expected 
the data points produce a linear plot intersecting the origin. From the linear fit an 
experimental calculation of the Darcy pore size, ( ULbedp/AP)1/2 ,  can be made using 
Darcy’s Law. The experimentally determined pore size was 0.0421 cm which represents 
a - 13.37 % deviation from the theoretically determined value, K ~ ~ ~ ,  of 0.0486 cm. 

The striking similarity between the transient nature of the additional pressure drop 
(figure 5)  and the birefringence shown previously (figure 2) suggests a direct 
relationship between the two observables. To demonstrate this relationship we plot in 
figure 7 both the transient birefringence and polymer contribution to the pressure drop 
for a single flow velocity (Depore = 7.18). Two different ordinates, for the two 
observables, are used and scaled to produce a close visual comparison. This graph 
shows a direct correlation between the increase in the pressure drop across the bed due 
to the presence of the polymer and the increase in the amount of polymer stretch. This 
convincingly demonstrates that the increase in flow resistance within the bed is due to 
the elongation of the polymer molecules. 

To further investigate this relationship, measurements of the steady-state bire- 
fringence are plotted against the steady-state value of the additional pressure drop 
due to the presence of the polymer (figure 8), with both measurements taken 
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FIGURE 7. Transient birefringence, An' (left ordinate, -), and addition of pressure drop due to the 
PIB (right ordinate, ---), of the 1000 p.p.m. solution for a single flow rate (Depore = 7.18). The two 
ordinates are scaled visually for comparison. The birefringence data are shifted 2 pore lengths to 
account for the distance between the end of the bed and the analysing windows. 
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FIGURE 8. Steady-state An' plotted against steady-state AP of the 100 and 1000 p.p.m. solutions for 
a number of flow velocities. Linear fits to the data for the two solutions accompany the plot. The inset 
graph is simply an enlargement of the region where the 100 p.p.m. data resides. 

simultaneously, at a number of flow velocities for both the 1000 and 100p.p.m. 
solutions. The remarkable linear relationship between the two quantities demonstrates 
that a simple proportionality constant relates the birefringence to the additional 
pressure drop and this proportionality constant is independent of the flow rate for the 
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FIGURE 9. Steady-state birefringence values for the 333 p.p.m. PIB solution plotted against the 
pore-size Deborah number. Systematic error is on the order of the size of the plot symbols. 

range of flow rates shown. Thus, the pressure drop across the bed builds as the chain 
elongates or, in essence, the flow energy is transferred to elastic deformation in the 
chain. 

A linear regression of the data for both concentrations was calculated and the two 
linear plots have been added to the graph. The proportionality constant between the 
two observables is then simply the slope of the linear fit. Equally noteworthy is the fact 
that the proportionality constant for the two solutions differs only by 4 % even though 
the solutions differ in polymer concentration by an order of magnitude and reside, as 
will be shown, in different concentration regimes. This then strengthens the assertion 
made above that the increased friction factor, due to the presence of polymers, is a 
result of significant chain elongation and not simply a local segmental alignment of the 
polymer backbone. 

3.3. Experimental analysis 
Figure 9 shows the steady-state values of birefringence from figure 2 plotted against the 
respective experimental pore-size Deborah number for each run. The graph exhibits a 
characteristic ‘ sigmoidal’ shape seen at all other concentrations. Relatively little 
increase in the birefringence was noted for Deborah numbers less than 5 .  At values 
greater than 5 a strong increase in the steady-state birefringence is observed. The 
birefringence continues to increase until a Deborah number of around 17 is reached. 
At this point a permanent decrease in the value of the birefringence obtained at the 
reference velocity is encountered. The values of the steady-state birefringence cease to 
increase significantly at higher values of the Deborah number, as shown, in what 
appears to be the onset of polymer degradation due to polymer scission. 

This degradation is documented more clearly in figure 10. In this graph an initial 
sweep of velocities was made with a ‘fresh’ PIB solution of 1000 p.p.m. The solution 
was subjected to progressively larger velocities (larger pore-size De) until we suspected 
significant polymer degradation had occurred. The solution was then stored, 
untouched, for 2 days. A second velocity sweep was then conducted on the same 
solution at the same ambient temperature. Assuming no polymer degradation had 
occurred, we would expect the solution to reproduce the same steady-state birefringence 
values since the relaxation times would be identical at the same temperature. However, 
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FIGURE 10. Evidence of polymer degradation for the 1000 p.p.m. PIB solution. Steady birefringence 
values measured during an initial, increasing sweep of velocities is shown, in addition to those for a 
second velocity sweep after polymer degradation was suspected. 

the second velocity sweep showed a dramatic and permanent decrease in the steady- 
state birefringence values at any given flow rate, which we argue is a result of polymer 
scission. 

Returning to figure 9, our data suggest that a critical Deborah number demarking 
a quantitative change in the chain elongation, Deerit, exists at a value of approximately 
5 .  Since this value is 0(1), we are supported in our view that the pore size is the 
appropriate lengthscale (and thus U/K1/' is the appropriate shear rate) in calculating 
the De. Since the pore size is apparently the important hydrodynamic lengthscale, it is 
the velocity gradient fluctuations at this scale and not at the scale of the individual bed 
fibres that produce the stretch observed in the experiments. This also appears correct 
when comparing De with the fibre Deborah number, Defibre, defined as 

where a is the fibre radius. For our bed Defibre is approximately five times larger than 
De. Using the fibre radius as a lengthscale, therefore, would produce a De,,,, of around 
25. However, one would expect theoretically that the effects of any such fibre-related 
phenomena would occur at a Defibre of order one (Harlen et al. 1992; McKinley et al. 
1993). 

Since the constant relating the birefringence to the second moments of the end-to- 
end vector of the polymer is unknown, the increase in birefringence, in and of itself, 
does not necessarily mean 'large' polymer stretch is occurring within the bed. Even if 
this constant were known, one cannot rule out the possibility that segmental alignment, 
which would produce a birefringent sample, could be occurring without any significant 
polymer stretch. However, there are three pieces of evidence to suggest large polymer 
stretch is indeed occurring. First, as mentioned previously, evidence of polymer 
degradation was found. Presumably only large deformations of a given polymer would 
induce chain scission. Second, measurements of the additional steady-state pressure 
drop due to the presence of the PIB polymer were shown in $3.2 to be an order of 
magnitude larger than the pressure drop associated with the solvent alone. Only large 
polymer deformation could produce such a phenomenon. 

Defibre = Uh/a, (1 1) 
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FIWJRE 11. A plot of the normalized relaxation decays of the birefringence for the 333 p.p.m. PIB 
solution after flow through the fibre bed produced a steady value of the birefringence. Shown are 
decays after steady flow at various pore-size Deborah numbers, hence various initial steady values of 
the birefringence. Also included are corresponding relaxation times, 2, found through an exponential 
fit. 

Lastly, we can compare our results to those of Geffroy & Leal (1990). In their work 
they measured the birefringence of M 1, a similar fluid, subjected to an extensional flow 
via a two-roll mill. Steady extensional flow is a strong flow, known to produce large 
deformation of polymers (Bird et al. 1978). M1 comprises polyisobutylene (same 
manufacturer and distribution), polybutene, and kerosene, instead of trichloroethylene, 
as the solvating agent. In addition, the concentration of PIB in M1 is 2440p.p.m. 
which is in the non-dilute concentration regime. The birefringence measurements 
obtained by the extensional and porous bed flows can be compared, to a first 
approximation, by normalizing the birefringence with concentration and comparing 
the two flows at any given post-critical Deborah number where the birefringence has 
increased significantly. For an extensional flow Deborah number of 7, which one 
knows produces a large polymer stretch, a birefringence value, normalized by 
concentration, of 3.6 x lo--’ p.p.m.-l is found, while a birefringence value of 
1.2 x lo-’ p.p.m.-l is found in the porous bed at comparable values of the pore-size 
Deborah number. While these values are different, they are of the same order of 
magnitude, suggesting that a dilute fixed fibre bed produces polymer deformation 
comparable to that in the two-roll extensional flow. Note that since the first effect in 
our porous bed of increased PIB concentration is to increase the specific birefringence 
obtained at a given value of De, the birefringence values produced in the two flow 
experiments may indeed be much closer quantitatively than suggested above. 

Another phenomenon observed throughout our experiments is displayed in figure 
1 1. In this graph the normalized birefringence relaxation curves for a number of runs 
taken at dzflerent Deborah numbers (and thus different steady-state values of the 
birefringence) are plotted against real laboratory time. In addition, values for the 
empirical relaxation time, h, and steady-state birefringence are shown. We note that as 
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FIGURE 12. A plot showing the ability of the pore-size Deborah number to correlate the steady-state 
birefringence data of two 1000 p.p.m. PIB solutions with average relaxation times, x, of 0.81 s and 
7.01 s. 

the Deborah number increased and the polymers were subsequently stretched to a 
greater degree, the corresponding characteristic relaxation time decreased. We are 
uncertain as to the true cause of this effect. However, two possible mechanisms seem 
likely. First, the conformation-dependent relaxation times could be a manifestation of 
the spectrum of relaxation times existing on each chain as predicted, for example, by 
the Rouse many-linked chain (Bird et al. 1978). Thus, our results could be explained 
by the relaxation modes of the smaller time constants becoming ‘excited’ as the 
pore-size Deborah number is increased. As this occurs the total relaxation signal 
would comprise to a larger extent these smaller relaxation modes, and hence the 
average relaxation time represented by one empirical 2 would decrease. 

Another possibility, however, follows from our gel permeation chromatography 
experiments which show that the majority of this polymer sample lies between the 
range of 2-20 x 10‘ g mol-’. Through known scaling laws (refer to $4.2), a spectrum of 
molecular weights implies a spectrum of relaxation times. Therefore, a different 
spectrum of relaxation modes are ‘excited’ in a polydisperse sample at different pore- 
size Deborah numbers. However, unlike higher frequency modes in the single chain, 
this mechanism entails ‘exciting ’ or stretching polymers of smaller molecular length 
with increasing flow rate. In our judgement solution polydispersity is the primary cause 
of conformation-dependent values of h, and we will assume that each chain in the solution 
can be characterized by a single relaxation time, depending on its molecular weight. In 
$5 we will return to this phenomenon and discuss the relative merits of this assumption. 

In a separate set of experiments, we investigated the ability of the pore-size Deborah 
number to correlate our steady-state data. Two solutions of equal PIB concentration, 
but differing polymer relaxation times, were prepared by increasing the ratio of low- 
viscosity solvent (trichloroethylene) to high-viscosity solvent (polybutene). Precautions 
were taken to ensure that the final concentrations of PIB in both solutions were 
identical. Figure 12 shows the steady-state data for two solutions with different 
relaxation times (0.81 and 7.01 s) plotted against the pore-size Deborah number. 
Because of the upper bound on flow velocities in our experimental system, the range 
of pore-size Deborah numbers accessible to experiments using the low-relaxation-time 
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FIGURE 13. Specific steady-state birefringence for 50, 100, 333 and 1000 p.p.m. PIB solutions plotted 
against the pore-size Deborah number. The error bars increase with decreasing PIB concentration 
because the birefringence is normalized with concentration. 

solution did not include the full spectrum of Deborah numbers for the high-relaxation- 
time solution. Even though the relaxation times differ by an order of magnitude, the 
two data sets tend to superpose, showing the ability of the pore-size Deborah number 
to correlate the steady-state birefringence data. 

Finally, we compare the steady-state data obtained by experiments on four PIB 
solutions (50, 100,333 and 1000 p.p.m.) to examine the effects of concentration in our 
data. In all four solutions the trichloroethylene/polybutene composition was kept a 
constant. Although the estimation of the value of the equilibrium overlap threshold C* 
(de Gennes 1979) was lOOOp.p.m., an experimental evaluation of the actual 
concentration at which the polymer solution enters the non-dilute regime during flow 
can be determined from our data. Figure 13 shows a compilation of data for the four 
concentrations. The steady-state values of the birefringence divided by the con- 
centration of the solutions are plotted against the pore-size Deborah number. In a truly 
dilute concentration regime there will be no interaction between different polymer 
molecules, and therefore any addition of polymers will increase the birefringence 
linearly. By normalizing the four sets of data with concentration, we expect to see data 
in the dilute regime superpose. This occurs for the 50 and 100 p.p.m. solutions. The 
specific birefringence fcr the 333 p.p.m. solutions begins to deviate from the specific 
birefringence for the 50 and 100 p.p.m. concentrations at a Deborah number of around 
10. Beyond De = 10, the normalized birefringence for the 333 p.p.m. solution increases 
at a rate greater than that for the 50 and 100 p.p.m. solutions. In other words, above 
a Deborah number of 10 the 333 p.p.m. solution produces a larger stretch per polymer 
than the lower-concentration solutions. For concentrations between 100 and 
333 p.p.m. the polymers in solution begin to interact with each other at some point in 
our flow experiments. Like the 333 p.p.m. solution, the specific birefringence for the 
1000p.p.m. solution also deviates from the specific birefringence for the 50 and 
100 p.p.m. solutions. However, this deviation occurs at a smaller Deborah number of 
around 5. Once again, for De >, 5 the birefringence increases at a rate greater than that 
of the lower-concentration solutions. Therefore, the prediction of C* using the 
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equilibrium scaling arguments ( N 1000 p.p.m.) differs from our experimentally 
measured transition concentration by almost an order of magnitude, demonstrating 
directly that dynamic polymer-polymer interactions can be significant in a solution 
which is dilute at rest. This is interesting since it confirms that the polymer’s stretching 
increases the lengthscale of polymer-polymer interactions relative to that in the 
equilibrium state. Note that the hydrodynamic interaction length should scale with the 
polymer’s largest dimension which increases as the polymer undergoes stretch. 

Even though it is shown that the transition from dilute to non-dilute concentrations 
occurs dynamically between 100 and 333 p.p.m. it is interesting to note that when this 
distinction is made the transition depends on the magnitude of polymer stretch. If 
figure 13 includes only data up to a Deborah number of 10, it would appear that the 
transition concentration would lie between 333 and 1000 p.p.m. Thus, these data 
strongly suggest that the transition from the dilute regime to non-dilute regime during 
flow is conformation dependent. 

4. Hydrodynamic theory 
We now seek to interpret our experimental results in the light of the existing 

theoretical description of polymer stretch and conformation change in dilute fixed beds 
as described by Shaqfeh & Koch (1 992). This section includes a complete mathematical 
characterization of the fixed fibre bed used in the experiments. The polymer sample 
used in our experiments is fairly polydisperse, while the theory of Shaqfeh & Koch 
(1992) includes consideration of dumbbell models with only a single relaxation time. 
In order to extend this theory for comparison with our experiments using polydisperse 
polymer samples, we average the theoretical results over a distribution of molecular 
weights which corresponds (near equilibrium) to a commonly recognized distribution 
of relaxation times. 

4.1. Bed theory 

In a detailed analysis, Shaqfeh & Koch (1992) demonstrated that for dilute beds the 
largest contribution to the averaged equation describing the evolution of polymer 
molecules (modelled as dumbbells) comes from the long-range hydrodynamic 
interactions. In this context, ‘largest’ refers to the leading-order term in an expansion 
for small bed solids volume fractions. Also ‘long-range’ refers to scales comparable to 
the Darcy pore size in the bed, which, because of the assumed diluteness, is much larger 
than the characteristic dimension of the bed particles (i.e. the radius of the fibres for 
a fibre bed). On the scale of the bed pore, the fibres can be treated as lines of screened 
force. In addition, if one also assumes that the polymer solution is sufficiently dilute, 
then one can restrict a kinetic theory describing the evolution of the polymers to 
include only single interactions between a polymer and a bed fibre. Multi-fibre 
interactions can then be included as additions to this basic theory via cluster expansion 
techniques which have been developed in the context of many other transport problems 
(Hinch 1977). This theoretical approach to stochastic flow problems is supported by its 
successful prediction of measured values of tracer particle orientation in fixed bed flow 
(Frattini et al. 1991). 

We first review the theory as applied to flows of dumbbells through fixed beds. In 
general, the dimensionless equation relating the rate of change of the end-to-end 
vector, i, and the local velocity gradient in the bed, V x u ,  becomes 

i = r-V,u-h(r)-. 
2De 
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In (12) all spatial lengths x have been made dimensionless with d l 2 ,  The Darcy pore 
size in the bed, all velocities with U, the mean flow velocity in the bed, time with U/K’/’ 
and the end-to-end vector, r,  with R,, the equilibrium radius of gyration; h is any 
function governing the restoring force of the dumbbell. In this work both Hookean and 
FENE dumbbells will be considered. In the former case h = 1 and in the latter 
h = Rk,,/(RLaZ - P) where R,,, represents the maximum point of extension relative to 
R,, where 

In (13) D is the diffusivity of the Dumbbell and 6 is the relaxation frequency associated 
with the spring. Note that R, is the equilibrium radius of gyrationfor a Hookean 
spring (which is close to the value for a FENE dumbbell). The averaged equation 
describing the probability density of configuration, ( Q ( r ) ) ,  for homogeneous, dilute, 
random beds is (cf. Shaqfeh & Koch 1992) 

Ri = 12D/$. (13) 

where T = t / h ,  V, is the gradient with respect to the polymer’s end-to-end vector, and 
dh is the conformational diffusion tensor which includes diffusion created by the 
hydrodynamic interactions of the polymer with the bed particles. It takes the form (in 
indicia1 notation) 

(15) 

The tensor Bikjn is a certain velocity-gradient correlation function that contains 
information concerning the manner in which the polymers change conformation 
during an interaction with a bed fibre as well as how this change is correlated with 
previous polymer-fibre interactions. The calculation of this tensor is the key piece of 
statistical information necessary to describe the conformation change of the dumbbell 
model. 

Since, in general, a simple solution for (SZ(r)) is difficult, it is more convenient to 
develop equations for the moment-of-inertia tensor (second-moment tensor) w, 
defined 

d:. = : [ idi j  + Bgkjn rk r,] .  

G = 1 rr(S2) dr. (16) 

From (15) we have (see Shaqfeh & Koch 1992) 

d F  - 
__- Ic -k hri rk -+ajk - Bjmkn = 0. 

dr  

In deriving (17) the pre-averaging approximation has been used in the case of the 
FENE dumbbell. Thus, as a first approximation h(r2/RiL,,) is replaced with the 
averaged quantity h(P/Riaxj .  Pre-averaging is only a reliable approximation when the 
distribution function, S Z ,  is strongly peaked (Tanner 1985). Note that the moment-of- 
inertia tensor serves as an important measure of polymer conformation change in 
many flows of dilute and senii-dilute polymer solutions (Bird et al. 1978). In addition, 
the birefringence of a dilute solution can, under the proper conditions, be a direct 
measure of the average second moment of the polymer coils. In the experiments 
described in 9 3 our conditions and solutions have been carefully chosen such that the 
birefringence is directly proportional to the difference in the principal eigenvalues of G. 

It is clear from (17) that, within the approximations of the theory described above, 
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the time-dependent second moment of E can be completely described for a given bed 
geometry once the tensor Bjkmn is calculated. The fibre bed utilized for these 
experiments is, as described in $2, square-symmetric. The calculation of Bikmn for this 
new bed structure (outlined in the Appendix) gives 

+ z n 2 (  3 ln2 ln(l/') ( K ~ " / L Z )  y (0 .30  . . . ) ] ~ j 3 S k 3 ( S k n - S k 3 6 n 3 )  

Defining the two bracketed terms in (1 8) as p1 and pZ7 respectively, and referring to 
(17), we find 

Finally, defining the three quantities 

(20) r2 = yiTi, ri = p - 2(r1rl+r2 r2) 

and noting that r2 = r: + 2p2 (21) 

2 - 1 -  - 

These equations are equivalent to those determined for polymer conformation in flow 
through an isotropic fibre bed by Shaqfeh & Koch (1992) even though the functional 
form of the conformational diffusivity tensor, Bjkmn,  is different. At this point we will 
consider only the steady solutions to the moments equations (22)-(24). These solutions 
can be found easily by setting the time derivatives to zero and solving the resulting set 
of quadratic equations, 

- ( 1  -p2 9 + y - 2 n 9 y )  + [( 1 -p2 9 + y - 2 ~ 9 7 ) 2 - 4 9 (  p2 y + ny2)(nB - 1)]"2 

29(P2 7 + VY2)  
r2 = > 

(25) 

where 
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We see for the Hookean dumbbell (R,,, + 00 ; y + 0) that when the rescaled pore-size 
Deborah number 9 = 1/p2 there exists no steady solution for the second moment, r2.  
Therefore, the critical point for conformation change, as discussed by Shaqfeh & Koch 
(1992), is governed by p2  and at 9 = 1/p2 there exists a sufficient number of stretched 
polymers such that the second moment of the distribution is unbound. More 
realistically, the FENE dumbbell, whose stretch is bound by a maximum length (R,,,), 
stretches to a large portion of its maximum extensibility at pore-size Deborah numbers 
greater than the critical value. 

4.2. Modijication of theory to include polydispersity 

Because of the effects of the polydispersity of the polyisobutylene used in our 
experiments (discussed in 9 3.3), the theory of Shaqfeh & Koch (1992) must be extended 
to account for the effects of polydispersity in order to facilitate a meaningful 
comparison with our data. The technique of averaging over a polydisperse length or 
molecular weight distribution has been used elsewhere (Fuller & Leal 1980). In this 
technique it ia assumed that a single relaxation time and single equilibrium radius of 
gyration are associated with the molecular weight of a polymer and are given by 

where h is the characteristic relaxation time of the polymer (and is not equivalent to 
the empirically determined n in 93), R, is the equilibrium radius of gyration, M is the 
molecular weight of the polymer, and v A and vg are the scaling exponents. Since 
polybutene and trichloroethylene are both good solvents for polyisobutylene a value 
of 2 is used for vg (i.e. the result for self-avoiding random walk (Flory 1953)) and for 
vA (i.e. the result for a Zimm chain with vg = 

A log-normal distribution of the molecular weight is assumed for the polymers. This 
distribution is often employed since it properly characterizes the non-negative value of 
the weight distribution in addition to the high-molecular-weight ‘ tail ’ associated with 
polydisperse polymer samples (Brandrup & Immergut 1989). The log-normal 
distribution is given by 

(Doi & Edwards 1986)). 

where p is probability, and (T, and ,uz are related to the true standard deviation, (T, and 
mean, p, of the log-normal distribution through the relations 

(3 1) 

(32) 

g = (egx - 1) e2Pz+gx 

p, = ePx+0.5gz 

Figure 14 shows this distribution with a mean of 1 and various values for the 
variance, (T. 

Equations (28) and (29) then relate the distribution of molecular weights to a 
distribution of relaxation times and radii of gyration. Thus, each polymer of molecular 
weight M is treated as if it contains its own single relaxation time and its own 
characteristic pore-size Deborah number. At any given flow rate, longer polymers are 
subjected to greater pore-size Deborah numbers than shorter polymers owing to their 
larger relaxation time. It follows that longer polymers will stretch to a greater degree 
than shorter polymers at any given flow rate. 
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FIGURE 14. Depiction of the log-normal distribution function with a mean, p, of unity and 
various values of the variance, r2. 

To calculate an average birefringence of the polydisperse sample, we further employ 
the model of Shaqfeh & Koch (1992). For any given molecular weight in the spectrum, 
a relaxation time and, thus, a Deborah number can be assigned. For each De a 
difference in the second moment can be calculated during the flow (see $4.1). This 
average can then be scaled with the radius of gyration (Nb2) for each molecular weight. 
To calculate an average over the molecular weight distribution of dimensionless 
moments we use the equation 

where { } p  represents the average over the molecular weight distribution and p is given 
by (30). This averaged quantity is now related to the solution birefringence by a new 
constant A' defined as 

where vtotUl is the total number of polymers per volume in solution and is related to the 
concentration, c, given here in units of p.p.m. In addition, each value of (XX) - ( Y Y )  
has an associated decay with cessation of flow and the average normalized decay of the 
system can be described by 

In (35), At) represents the time-dependent decay function generated through the 
integral over exponentials (found from the spectrum of molecular weights) weighted by 
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FIGURE 15. Theoretical predictions of {(AX)-( YY)},, the difference of the second moments, for 

various values of the variance, cr2 as a function of the pore shear rate, U / K ' / ~ .  

the respective magnitude of initial stretch [ ( X X )  - ( YY)lsteady and its probability, p .  
This function will be used in $ 5  to determine PA in (28) through a fit. This method was 
used to model the conformation-dependent relaxation times found in our experiments 
(figure 11). Equations (33) and (35) are both defined as integrals over all positive real 
space. In numerically evaluating these integrals the limits were chosen to coincide with 
the range of molecular weights determined in our gel permeation chromatograph 
experiments. 

Figure 15 shows the resulting average difference in the second moments plotted 
against the characteristic shear rate within the bed ( U / K ' ' ~ )  for the flow of a 
polydisperse polymer solution with the molecular weight distribution shown in figure 
14. In general, the rate of increase of the moments decreases with increasing 
polydispersity (the latter increases with increasing g2 defined by (3 1)). Moreover, the 
apparent 'critical' shear rate (at which the difference in the moments begins to increase 
significantly), slightly decreases with increasing polydispersity. These effects are 
primarily due to the presence of a range of molecular weights which undergo a 
significant diffusive stretch at various pore shear rates. Both effects serve to significantly 
'smooth' the transition of the polymer from the polymer's equilibrium coiled 
conformation to the stretched conformation at high shear rates, suppressing the 
visibility of a critical pore-size Deborah number. 

5.  Discussion 
Having modified the existing theory of Shaqfeh & Koch (1992) to account for the 

specifics of bed geometry and polydispersity, a direct comparison of theory to 
experiment may be addressed. The modified theory at this point still has several 
unassigned parameters. These include 2 - the variation of the polymer molecular 
weight distribution normalized about the mean, R,,, - the maximum extensibility of 
the polymer, PA-  the coefficient relating the molecular weight spectrum to the 
relaxation time spectrum, and A' - the coefficient relating the birefringence to the 



Polymer conformation during jlow through a JixedJibre bed 345 

Normalized M 

3.0 

.; 2.6 tz s 

+2 2 
2 4 2.2 

1.8 

0 1 2 3 
L I I I I I I 

\. 

1 

0 S 10 15 20 x 106 
M 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

FIGURE 16. The fit of the log-normal distribution (r2 = 0.80) (-) with polydispersity data 
obtained using a Waters gel permeation chromatography (m). 

difference in the second moments. These values must be either determined or 
approximated in order to quantitatively compare the theory and experiment. 

Chromatography experiments were undertaken to determine aW/an which would 
define the variance of the molecular weight distribution. In figure 16 a pointwise plot 
of the polydispersity distribution determined from our experiments is shown. Utilizing 
this plot a working value of C? = 0.80 was determined by fitting our log-normal 
distribution. In addition, the probability of finding a polymer with molecular weight 
outside the range shown in figure 16 was set to zero and, thereafter, the distribution 
was renormalized. While this method in no way is an exact characterization of the true 
distribution, it offers an approximate value from which to proceed. 

The estimation of the value of R,,, offers particular problems not only because of 
the distribution of the polymers’ equilibrium radius of gyration due to the 
polydispersity of the polymer sample but also because of the stochastic nature of the 
flow and its resulting effects on the conformation of the polymers. It is unlikely that all 
polymers at a given molecular weight will, when stretched to a large degree, approach 
the same maximum length. Rather it is expected that a distribution of highly ‘kinked’ 
to highly ‘unravelled’ polymers will exist. This effect may possibly be amplified by the 
widely varying flow histories of individual polymers in the bed. Therefore any 
determination of this parameter should be taken as an order of magnitude 
approximation. 

There are several methods that we can utilize to make this approximation. Peterlin 
(1961) shows that the maximum birefringence, An: for a dilute polymer solution of 
independently aligned, fully stretched chains, can be given as 

An; n 2 + 2  N A  N 
- nc = 2 4 4  7 (a, - %I. 

N A  is Avogadro’s number, N is the number of segments in the statistical model, and 
M is the molecular weight. Using this equation to estimate a value of N ,  we can 
determine an approximate maximum value for the dimensionless quantity R,,,. To 
estimate N we take the value for (a,-a,) as 5.96 x cm3 (Chirinos et al. 1990) 
which is determined from values of the stress-optical coefficient, C (Larson 1988), for 
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the M1 solution in small-strain oscillatory shear flow. As a measure of the order of 
magnitude of And, we utilize the birefringence measurements obtained at the point of 
polymer degradation from our experiments at 100 p.p.m. concentration. However, we 
accept the likelihood that the true value of An; could be significantly larger than this 
estimate and, thus, use a value ten times greater to ensure an upperbound estimation 
for R,,,. Using these values, we determine the largest possible value of N to be 
O(lOOO0) (actual value is 7310). Thus, an estimate of the maximum value of R,,, 
scaled by the equilibrium radius of gyration would be 7310/73103/5 = 35.12 - O(40) 
(using the experimental value of An; we find an estimation of the maximum value of 
R,,, = 13.98 N O(15)). Thus, we would expect the true value of R,,, to lie at or below 
an O(40) value. The only experimental determination of this parameter was found in 
the work of Quinzani et al. (1990) and McKinley et af .  (1993). Quinzani et af .  (1990), 
who characterized a polyisobutylene solution similar to ours but more concentrated, 
found a value of R,,, of 10 for the first and primary mode of a four-mode 
Bird-DeAguiar model. This value agrees with our estimate made above. In addition, 
McKinley et af. (1993) use a value for R,,, of 12 for a non-interacting dumbbell model 
in flow past a single cylinder. Finally, Ng & Leal (1993) found that a value of N = 1200 
(which would correspond to an R,,, of 17) well represented their birefringence data 
on monodisperse polystyrene solutions over a range of flow strength. 

For our theoretical predictions a constant value of R,,, = 25 is used. At lower 
values of R,,, the rate of stretch, with increasing shear rate, is constantly decreasing. 
This causes the functional shape of the steady-state moments to be of a slowly 
'arching' form rather than the sigmoidal shape encountered in our experiments. A 
value of 25 retains the sigmoidal shape of our experiments and remains within our 
O(40) prediction for an upperbound value of R,,,. Note that in the calculations above 
we have assumed that there is no molecular weight dependence of R,,,, though others 
(Fuller & Leal 1980) have assumed that R,,, - N .  If we had assumed, for example, 
that R,,, N M2l5 then the variation over the entire molecular weight distribution of 
our experiments would only be a factor of 2.5. Thus, we shall maintain that R,,, 
retains a constant value of 25. 

Using the previously mentioned values of cr2 = 0.80 and R,,, = 25 we proceed to 
determine PA in (28). This is accomplished through a fit of the relaxation data (obtained 
through experiments on the 100 pap.m. PIB solution) to the theoretical predictions 
(obtained through the integration of exponentials outlined in 54). Figure 17 shows a 
plot of the decay of the birefringence (normalized to unity) for the 100 p.p.m. solution. 
The data shown correspond to the decay of the birefringence of the solution after being 
subjected to a number of flows with pore shear rates, U / K ~ / ~ ,  in the range of 
4.12-20.16 s-'. In addition, the theoretical results for the functional form of the decay 
of the difference in the second moments (normalized to unity as defined) for an 
identical range of bed shear rates is shown for several values of PA. We find that 
PA = 0.316 s reproduces the general timescale on which our experimental results decay. 
In addition, in the secondary graph we can see that the distribution of relaxation rates 
predicted through our theory closely parallels the distribution seen in our experimental 
results. This distribution is both a function of the polydispersity of the polymer sample 
(cr2) and the value of PA. The good fit suggests that the values chosen for these two 
quantities accurately characterizes our polymer system. 

It is interesting to note that, by definition, the value of 0.316 s for PA represents the 
relaxation time for the mean molecular weight. This is a significantly lower value than 
the empirical value of h obtained from an exponential fit of A t )  ( - 1 .O s). The reason 
for this is shown clearly in figure 18. In addition to showing the probability values, p ,  
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FIGURE 17. Normalized plot of both the decay of the birefringence following cessation of the flow of 
a 100 p.p.m. PIB solution and the theoretical predictions of the difference in the second moments 
assuming a polydisperse polymer sample (az = 0.80) and values of PA = 0.1 16,0.316, 0.516 s, where 
PA represents the relaxation time of the mean molecular weight. 
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FIGURE 18. Plot of the probability values, p (given by the log-normal distribution function) (----), 
as a function of the normalized molecular weight in addition to the normalized values of 
p { ( X X )  -( Y Y ) } ,  (-) which are used to 'weight' individual exponential decays of the second 
moment in calculating At). 
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FIGURE 19. Specific steady-state birefringence of the 50 (0) and 100 PIB p.p.m. (m) solutions plotted 
against { ( X X )  - ( Y Y ) } p ,  StPady  at the corresponding values of the characteristic pore shear rate 
U/K1/2 .  Two linear fits are included (one for the 100p.p.m. data alone and one for the 50 and 
100 p.p.m. data collectively) which determine the value of the constant A‘ relating the index of 
refraction and second-moment tensor. The errors bars increase with decreasing PIB concentration 
because the birefringence is normalized with concentration. 

as a function of normalized molecular weight, M/M,,, (given by the log-normal 
distribution) we have also plotted the ‘weighting’ values, { ( X X )  - ( Y Y ) } , p ,  used to 
calculate the moments decay, At), for pore shear rates of 1 .O, 10.0 and 20.0 s-l as a 
function of normalized niolecuIar weight. We see the time constants that contribute 
most to the form of,f(r) are those with molecular weights approximately two times that 
of the mode of the molecular weight in the distribution. Thus, even though the 
relaxation time for the mean molecular weight is 0.316 s, it is the larger-molecular- 
weight polymers (those with relaxation times of approximately 1 s) which determine 
the time constant characterizing the relaxation of the second moments. 

Finally we determined the value of A’ (the coefficient relating the index of refraction 
and second-moments tensor averaged over the molecular weight distribution) through 
a linear regression of the steady-state results. Figure 19 shows the steady-state, specific 
birefringence measurements obtained for the 50 and 100 p.p.m. (dilute) solutions 
plotted against the difference in second moments, {(XX) - ( Y Y ) l p ,  as predicted by 
the modified theory. For each specific birefringence datum, the corresponding pore 
shear rate ( U / K ~ ’ ’ )  is used in the theory to calculate a prediction of the difference in the 
second moments. Given a theory which perfectly describes the evolution of the average 
steady-state conformation of polymers, combined with the linear relation between 
birefringence and the second moments, we would anticipate figure 19 to be a linear plot 
intersecting the origin with slope equal to the constant, A’ /c .  We notice that within the 
experimental error this is essentially what we observe. Small deviations occur between 
the 50 and 100 p.p.m. solutions that are not apparent in figure 13 (specific birefringence 
plotted against pore-size Deborah number). This is most likely due to small temperature 
differences in the 50 and 100 p.p.m. solutions which lead to differing viscosities and, 
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thus, differing relaxation times. However, within the experimental error the data points 
for the two solution superpose. Included is the linear fit to both the 100 p.p.m. PIB 
solution and the collective data of the 50 and 100 p.p.m. PIB solutions. The slope of 
these fits then determines the value of A'. 

Using the slope calculated from the linear fit in figure 19 we obtain the scaling 
parameter, A', which is then used to provide a comparison of the experiment and 
theory in figure 20. The specific birefringence for both the 50 and 100p.p.m. PIB 
solutions and the difference in the second moments (now scaled with the values of A' 
determined above) are plotted against the characteristic shear rate in a pore. The 
characteristic shape, inherent in the theory, matches the observed experimental data. 
In addition, the point at which the difference in the second moments undergoes a 
significant increase agrees well with that of the experiment. This point of increase is 
determined solely by the pre-determined parameters of the theory and, thus, represents 
a quantitative comparison with experiment. 

Finally, a comparison of transient birefringence increase with our theoretical 
predictions is presented. Figure 21 shows the transient increase in birefringence for the 
100 p.p.m. solution from its initially coiled state for a number of flow rates. Once again 
the flow time is made dimensionless with the mean flow velocity, U, and the pore size, 
K ~ / ' .  In addition, the theoretical predictions for the average difference in the second 
moment at identical values of U/K~/ '  accompanies the experimental data and are scaled 
according to the determination of A' found through the linear fit with only the 
100 p.p.m. PIB solution data. As with our comparison to the steady-state theoretical 
predictions, (33) is used. However, in this case the time-dependent equations for the 
second moments are numerically solved and then the results averaged over the 
molecular weight distribution at incremental times. As stated previously all bed and 
polymer parameters are, at this time, specified. 

Figure 2 1 represents our least satisfying comparison between the theoretical and 
experimental results. While there are deviations in the steady-state or near steady-state 
values of the moments and birefringence these are, for the most part, within the 
experimental error. The primary incongruity between the two sets of data stems from 
a discrepancy in the timescale involved with the polymer stretch. While the number of 
pore lengths required to reach steady state as predicted by the theory is of the same 
order as that of the experiments and, in addition, the trend of an increasing number 
pore lengths necessary to reach a steady state with increasing U / K ~ / ~  is reproduced. The 
range of timescales apparent in the theoretical predictions, however, is not seen in the 
experimental data. The theoretical transient data at small values of U / K ~ / '  attains 
a steady state in a shorter distance than the corresponding experimental transient data. 
Likewise, at large values of U / K ~ / '  the theoretical predictions fall far short of attaining 
their steady values while the experimental results have essentially reached a plateau. 
There are a number of factors which could produce this discrepancy. First and 
foremost is the assumption that our conformation-dependent relaxation times are due 
solely to the polydispersity of the sample and that there exists a one-to-one 
correspondence between molecular weight and relaxation time. The presence of a 
spectrum of relaxation modes per chain could potentially alleviate this problem. 
Secondly, our log-normal distribution was terminated at low molecular weights by the 
absence of data in this region. This short-chain cutoff occurred at MIM,,, = 0.3. The 
presence of these shorter chains, and correspondingly their shorter relaxation times 
would contribute to the birefringence at larger values of U / K ~ / '  as these polymers begin 
to become stretched. Hence, the timescale for growth of the birefringence could 
potentially decrease. Lastly one must consider the possibility that physical mechanisms 
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FIGURE 21. Transient results showing the birefringence for the 100 p.p.m. PIB solution (-m--) 
plotted against the dimensionless experimental flow time for characteristic shear rates of 4.12, 5.76, 
7.82, 9.47, 1 1 . 1 1 ,  13.58, 16.87 and 20.16 s-l. Included as the heavy lines are the transient results of 
the theoretically predicted averaged difference of the second moments for the previously stated pore 
shear rates. The two ordinates are scaled according to the determination of A' using only the steady- 
state results of the 100 p.p.m. PIB solution. crz = 0.80, PA = 0.316 s, R,, = 25. 



Polymer conformation during $ow through a fixed fibre bed 351 

not included in the theory, specifically the absence of close polymer-fibre hydro- 
dynamics interactions, could play an important role in changing polymer 
conformation at larger values of U / K ~ / ~ .  

6.  Conclusions 
To our knowledge, the experimental results we present document the first direct 

confirmation of large polymer stretch occurring within a dilute disordered fibre bed 
and provide new insight into establishing porous media flow as a stochastic strong 
flow. Evidence of polymer degradation and birefringence levels of the same order of 
magnitude as those produced in two-roller extensional flows establish the ability of the 
flow to produce significant polymer stretch in the direction of flow even though the 
fibre bed examined was dilute (2.47 O h ) .  Furthermore, we have shown that the transient 
development of the pressure drop across the bed required to maintain a fixed flow rate 
is directly proportional to the observed birefringence signal, as are the steady-state 
values. Moreover, this single proportionality constant is independent of polymer 
concentration and Deborah number. These results represent the first direct 
microstructural evidence in favour of the hypothesis that large polymer stretch is 
indeed responsible for the striking increase in hydrodynamic resistance seen for flows 
of flexible polymer solutions through porous media. 

The amount of stretch induced in the polymer chains, obtained through 
measurements of the linear birefringence, was found to be a function of the distance 
traversed by the polymer molecules and increased monotonically with increasing pore- 
size Deborah number. In addition, the results suggest the existence of a critical 
Deborah number for which flows, characterized by a Deborah number larger than the 
critical value, produce large changes in a measure of the average polymer conformation. 
That the value of the Deborah number at this critical point is O(1) (De - 5) ,  suggested 
the correct lengthscale characterizing the flow strength or shear rate is apparently the 
Darcy pore size, which is a measure of the interstitial spaces within the bed and for 
dilute beds is much larger than the lengthscale of the constituent bed particles. Thus, 
the primary mechanism for stretch and alignment of the polymeric tracer particles is 
their interaction with velocity-gradient fluctuations scaling with the characteristic 
shear rate, U/K112. 

We then demonstrated that the theory by Shaqfeh & Koch (1992) when modified for 
the specifics of our experiments such as polymer polydispersity and the bed geometry, 
can predict qualitatively, and in some respects quantitatively, the important features of 
our experimental birefringence results. This supports the idea that far-field hydro- 
dynamic interactions within dilute porous media can produce a diffusive effect that 
leads to large polymer stretch. To our knowledge, no other theory of porous media 
flow to date, employing any of the model geometries proposed in the literature for such 
media, can produce a comparably accurate description of the chain stretch we observe 
here in a flexible polymer system. 

Finally, it is worth noting that on physical grounds the increased driving pressure 
required to maintain a constant flow rate through the fibrous bed as the polymer chains 
elongate is a direct consequence of the elasticity of those chains; namely, a portion of 
the increased energy input to drive the flow is stored as elastic energy in the deformed 
macromolecules. As such it is suggested that the stochastic strong flow represented by 
flow through a dilute random fibrous bed might serve as an alternative means of 
rheologically characterizing polymer behaviour in highly elongational deformation 
histories. 
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More specifically, the diffusive nature of the deformation history of a chain passing 
through the bed affords it the opportunity to obtain very high degrees of stretch 
relative to more commonly accepted extensional rheometers, such as the flow history 
obtained in opposing jets. Indeed, some researchers have suggested that high degrees 
of polymer stretch may not in fact occur in these other extensional flow geometries and 
that birefringence measurements made therein saturate at segmental configurations 
substantially less anisotropic than a highly elongated chain (Cathey & Fuller 1990; 
Menasveta & Hoagland 1991). 

While it is not immediately evident how the so-called extensional viscosity (which 
might more aptly be termed an elastic material function since it actually measures a 
normal stress anisotropy) could be extracted from measurements of hydrodynamic 
resistance in the stochastic strong flow on which we report here, it does seem clear that 
such pressure drop data obtained on highly elongated flexible macromolecules should 
at least qualitatively complement the extensional viscosity reported from other 
experiments wherein the level of chain strain achievable is likely to be substantially less. 

Lastly, we speculate that the stochastic strong flow might show promise as a means 
of rheologically characterizing semi-flexible systems, though rotary Brownian effects 
(Frattini et al. 1991) may become important simultaneously with achievement of 
critical chain stretch, and we further suggest that some consideration in future be given 
to the use of the dilute random fibrous bed as a process vehicle to produce critical chain 
alignment and elongation in situations where such microstructural features are 
desirable for practical reasons. 

The authors would like to acknowledge the support of several organizations for 
funding this work. First, our research was initiated with support from the Center for 
Materials Research at Stanford University under the NSF-MRL Program. We would 
like to thank the National Science Foundation for additional funding through the 
Presidential Young Investigator Award, grant No. CTS-9057284. In addition we 
would like to thank the David & Lucille Packard Foundation for a fellowship to 
E. S. G. S. and the ACS-PRF for their funding through grant 23214-G7. Portions of 
this work were begun at Carnegie Mellon University during P. L. F.’s tenure on the 
faculty there and were funded by his Dreyfus Foundation Teacher-Scholar Award and 
his NSF PYI award (CTS-8552496). 

Appendix 
As described elsewhere (Shaqfeh & Koch 1992), there are a number of ways to 

calculate Bjkmn. However, the most general method which has been developed 
heretofore is to relate the flow within the fixed bed to an equivalent stochastic Gaussian 
field (Shaqfeh & Koch 1992). The tensor Bjkmn can then be related to the covariance 
of this field. If w(x) is the stochastic velocity at a point x in this field, then the 
covariance is defined 

where the angle brackets now refer to an average over the Gaussian statistics of the 
field. Since the bed is assumed to be homogeneous, the translational invariance of the 
system requires that A take the form 

(A 2) 
where the ‘hat’ refers to the Fourier transform (in both x and x’) and where the tensor 

A = ( w ( x )  ~(x ’ ) ) ,  (A 1) 

&(k, k’) = (27~)~S(k + k’)f,,(k), 
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with V the volume of the system (in the limit as V+ a). The tensor Bjkm,, was derived 
by Shaqfeh & Koch (1 992), in terms of the function f j m  as 

where the integral is over the wavevector 5 lying in the plane perpendicular to the mean 
flow U, i.e. tj  = (aj,- oj f im)k ,  and 0 = U / l q .  This theory can be applied to any 
homogeneous fibre bed upon specification of the orientation distribution function. In 
previous work the fourth-tensor, Bikmn, was found for isotropic beds of spheres and 
fibres (Shaqfeh & Koch 1992). 

We begin with a working approximation for the dimensionless covariance of the 
equivalent Gaussian field for a fibre bed: 

dC(u’),(Z-p, e 14, e’)(u’)z(-p, e 14, e’), (A 5 )  

where (u ’ ) ,  is the conditionally averaged velocity disturbance for a single isolated fibre 
in a porous bed positioned at Z and is a function of p, the distance in the plane 
perpendicular to the fibre’s orientation, e .  (u’) ,  is the correction to the disturbance 
velocity field created by a single fibre given the presence of a second fibre located a 
distance 4 away. All calculations will be completed to leading order in bed volume 
fraction. The covariance is made dimensionless with U 2 .  In addition, 4 is the solids 
volume fraction and a is the radius of the fibre. Finally, g(e)  is the orientation 
distribution function and describes the probability of finding a fibre with orientation 
e, and g(e’ I 2, e )  is the probability of finding a second fibre of orientation e’, given a 
fibre at position Z with orientation e.  In the square-symmetric bed used in our 
experiments and assuming no orientational correlations we have 

g(e) = :&(el - 1) +$S(e, - l),  
g(e’ I Z, e )  = f&(ei - 1) + fS(ei - 1). 

(A 6) 

(A 7) 

Note that the approximation given by (A 5 )  takes into account interparticle interactions 
through two-particle interactions, which are the leading-order effects for small solids 
volume fraction. Higher-order interactions could be included and would create terms 
which are higher order in powers of 1 /In (1 /$) or equivalently 1 /In ( P / a ) ,  (cf. (A 17) 
and (19)). 

Taking the Fourier transform of (A 5 )  produces a relation between the transform of 
the covariance and the transform of the disturbance velocity, namely 

hi, = (27~)~&(k+k‘)  deg(e)&(k.e)(li‘),(li‘), 

where (a’), and (a’), represent the transforms of (u ’ ) ,  and (u’), ,  respectively. From 
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(A 2), we see that the bracketed term is equivalent to hi. In order to determine the 
transform of the far-field disturbance velocity created by a single isolated fibre in a 
porous bed, a solution of the appropriate Brinkman’s equations including a line 
forcing must be determined. The line force solution for Brinkman’s equations in a fibre 
bed is given as the solution of 

where the right-hand side of equation (A 9) is the Dirac delta function forcing term, 
p is the viscosity, and Kii is the permeability tensor for our square-symmetric bed 
(Jackson & James 1986). In addition, 3 represents the direction of the mean flow and 
J.l is the force per length on the fibre which, for a fibre of orientation e is given by 

where ui is the fluid velocity at the fibre. We solve Brinkman’s equations for the 
conditionally averaged disturbance velocity with a single fibre held fixed by first 
Fourier transforming (A 9) and then letting uj be the bulk flow, Ui = USi3. Thus, we 
find 

where 5 is the wavevector in the plane perpendicular to e and b is given by 

To find the correction to the conditionally averaged disturbance velocity which 
includes the first effects of fibre-fibre interactions, we let ui be given by the 
configurationally averaged velocity disturbance created by the presence of a second 
fibre located a distance away. Thus, we obtain 

where fj in (A 15) is given by 



Polymer conformation during @ow through a fixed fibre bed 355 

Combining all our terms in (A 4), (A S), (A 13) and (A 15) and completing the integrals 
we have 
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